The geometric lattice of embedded subsets

نویسنده

  • Giovanni Rossi
چکیده

This work proposes an alternative approach to the so-called lattice of embedded subsets, which is included in the product of the subset and partition lattices of a finite set, and whose elements are pairs consisting of a subset and a partition where the former is a block of the latter. The lattice structure proposed in a recent contribution relies on ad-hoc definitions of both the join operator and the bottom element, while also including join-irreducible elements distinct from atoms. Conversely, here embedded subsets obtain through a closure operator defined over the product of the subset and partition lattices, where elements are generic pairs of a subset and a partition. Those such pairs that coincide with their closure are precisely embedded subsets, and since the Steinitz exchange axiom is also satisfied, what results is a geometric (hence atomic) lattice given by a simple matroid (or combinatorial geometry) included in the product of the subset and partition lattices (as the partition lattice itself is the polygon matroid defined on the edges of a complete graph). By focusing on its Möbius function, this geometric lattice of embedded subsets of a n-set is shown to be isomorphic to the lattice of partitions of a n+ 1-set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

representation theorems of $L-$subsets and $L-$families on complete residuated lattice

In this paper, our purpose is twofold. Firstly, the tensor andresiduum operations on $L-$nested systems are introduced under thecondition of complete residuated lattice. Then we show that$L-$nested systems form a complete residuated lattice, which isprecisely the classical isomorphic object of complete residuatedpower set lattice. Thus the new representation theorem of$L-$subsets on complete re...

متن کامل

MODULARITY OF AJMAL FOR THE LATTICES OF FUZZY IDEALS OF A RING

In this paper, we construct two fuzzy sets using the notions of level subsets and strong level subsets of a given fuzzy set in a ring R. These fuzzy sets turn out to be identical and provide a universal construction of a fuzzy ideal generated by a given fuzzy set in a ring. Using this construction and employing the technique of strong level subsets, we provide the shortest and direct fuzzy set ...

متن کامل

ON THE SYSTEM OF LEVEL-ELEMENTS INDUCED BY AN L-SUBSET

This paper focuses on the relationship between an $L$-subset and the system of level-elements induced by it, where the underlying lattice $L$ is a complete residuated lattice and the domain set of $L$-subset is an $L$-partially ordered set $(X,P)$. Firstly, we obtain the sufficient and necessary condition that an $L$-subset is represented by its system of level-elements. Then, a new representat...

متن کامل

The Boundary Conditions Geometry in Lattice-Ising Model

We found that the differential topology of the lattice-system Ising model determines whether there can be the continuous phase transition, The geometric topology of the space the lattice-system is embedded in determines whether the system can become ordered. If the system becomes ordered it may not admit the continuous phase transition. The spin-projection orientations are strongly influenced b...

متن کامل

BEST APPROXIMATION IN QUASI TENSOR PRODUCT SPACE AND DIRECT SUM OF LATTICE NORMED SPACES

We study the theory of best approximation in tensor product and the direct sum of some lattice normed spacesX_{i}. We introduce quasi tensor product space anddiscuss about the relation between tensor product space and thisnew space which we denote it by X boxtimesY. We investigate best approximation in direct sum of lattice normed spaces by elements which are not necessarily downwardor upward a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1612.05814  شماره 

صفحات  -

تاریخ انتشار 2016